Posts

Showing posts from August, 2020

10th maths solutions

Welcome to our website.... Click here to solution of  Exercise 1.4 Click here to solution of  Exercise 1.5

Group Theory

Group (Defn)    A non-empty set G with binary operation • or ∗ is said to be group if G satisfies groups laws,   〈 group denoted by (G, ∗ ) 〉   Groups laws          1.Closure law                a, b ϵ G ⇨ a ∗ b ϵ G 2.Associative law        a, b,c ϵ G ⇨(a∗b)∗c =a∗(b∗c) 3.The existence of Identity        t he exists e ϵ G such that a ∗ e = e ∗a = a, ⩝ a ϵ G 4.The existence of Inverse        there exists a ʹϵ G such that a ʹ∗a = a∗ a ʹ, ⩝ a ϵ G. Commutative Group or Abelian Group Let G be a group with binary operation ∗    〈 i.e (G, ∗ ) be a group 〉 then for every a,b ϵ G such that a ∗ b =b ∗ a Quasi Group        Let G be a non empty set then G satisfies closure law only        a, b ϵ G ⇨ a ∗ b ϵ G      Semi-Group      Let G be a non empty set then G satisfies closure law and      associative law only      c losure: a, b ϵ G ⇨ a ∗ b ϵ G       a ssociative: a, b,c ϵ G ⇨(a∗b)∗c =a∗(b∗c)      Monoid        Let G be a non empty set then G satis